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The effects of a feedback with multiple time delays on noise-induced dynamics are studied in a nonlinear
system close to the Hopf instability. We show analytically and numerically that such a feedback creates two
distinct time scales, which can be tuned independently by the feedback parameters. In this way, the coherence
of noise-induced oscillations can be drastically improved, and an arbitrarily large correlation of oscillations can
be achieved without inducing a bifurcation. This opens up new perspectives for control of stochastic dynamical
systems.

DOI: 10.1103/PhysRevE.75.040101 PACS number�s�: 05.40.Ca, 05.45.Gg

With the discovery of stochastic �1� and coherence reso-
nance phenomena �2,3� the role of random fluctuations in
nature had to be seriously reassessed. It was found that in
nonlinear systems the energy of noise can be counterintu-
itively utilized for enhancement or even generation of or-
dered motion. Such a constructive influence of noise appears
to be important in many areas of science, see �4,5� for recent
reviews. Once the prominent role of noise-induced effects is
understood, it appears very attractive to control those, i.e.,
deliberately change their features. However, although the
principles for controlling deterministic motion are quite well
developed, the control of dynamics, which is strongly influ-
enced by noise is still an open problem. One of the prospec-
tive ways of solving this problem seems to be the adaptation
of methods for chaos control �6–8�.

The effect of fluctuations is most conspicuous if the sys-
tem is close to an instability. In this case, noise can drasti-
cally change the dynamics of the system, e.g., by creating
new ordered dynamical patterns �5�. In this Rapid Commu-
nication we consider a nonlinear oscillator below a Hopf
bifurcation, where an addition of noise leads to the appear-
ance of quite regular oscillations, whose coherence depends
upon the noise intensity. We analytically describe the effects
of extended time-delayed feedback, which includes multiple
delays, on noise-induced dynamics in the system. In particu-
lar, we demonstrate that such feedback can drastically im-
prove long-term correlation of stochastic oscillations.

As a paradigmatic model we use the Van der Pol system
with an extended time-delayed feedback loop F�t� in a form,
which was earlier proposed for the control of deterministic
chaos �9�,

ẋ = y ,

ẏ = �� − x2�y − �0
2x + D��t� + F�t� . �1�

Here F�t��K��=0
� R��y�t− ��+1���−y�t−����, �0 is the natu-

ral oscillation frequency, � is the bifurcation parameter,
which vanishes at the �supercritical� Hopf bifurcation, and x
and y define a state of the system. The term D��t� represents
Gaussian white noise with zero mean and intensity defined
by the parameter D: 	��t�
=0, 	��t���t��
=��t− t��. The con-
trol force F�t� is an infinite sum of differences of the variable

y at time t− ��+1�� and t−�� ���N� weighted with R�. To
assure that the sum converges, we restrict the memory pa-
rameter R to 0�R	1. Experimentally, such a control
scheme can be easily realized, e.g., with lasers coupled to an
external Fabry-Pérot resonator �10�. For R=0 we obtain the
single-time delayed feedback scheme introduced by Pyragas
�11�. With increasing R states of the system further in the
past at times �t−��� become more important. The parameter
K represents the strength of extended delayed feedback. Note
that the control force F can be written as the recursion
F�t�=K�y�t−��−y�t��+RF�t−��, which indicates a simple
implementation of this feedback. In the following we fix the
parameters �=−0.01 and �0=1, where a stable focus at the
origin �x ,y�= �0,0� is the only attractor in the deterministic
system �D=0�. For D�0 the system exhibits noise-induced
oscillations.

In order to quantify the coherence and time scales of those
noisy oscillations, we introduce the normalized autocorrela-
tion function �ACF� of y,


yy�s� = �yy
−2	�y�t − s� − 	y
��y�t� − 	y
�
 , �2�

with �yy
2 = 	�y�t�− 	y
�2
 and the power spectral density

Syy��� = lim
T→�

1

2�T��0

T

y�t�e−i�tdt�2

. �3�

The ACF of noise-induced oscillations in the Van der Pol
system is a fast oscillating function with an exponentially
decaying envelope �12,13�. We define the exponential corre-
lation time te as the decay constant of this envelope. Thus,
the larger te, the more regular is the dynamics. For R=0 the
ACF can be approximated by 
yy�s�=cos��0s�exp�−s / te�,
and te
 �

2 tcor holds with tcor=�0
��
yy�s��ds �12,14�.

However, R�0 leads to a qualitative change of the char-
acter of the ACF. Figure 1 shows that there are two time
scales in the ACF: a slow exponential decay, which is al-
ready present in the case R=0, and a new fast time scale of
correlation, which manifests itself in a sudden drop of the
ACF within a very short time interval 
s comparable to the
basic period of oscillation T0=2� /�0. To explain two char-
acteristic time scales of the ACF we calculate the power
spectral density Syy���. Using the self-consistent mean-field
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method of �13�, it is possible to show that close to the Hopf
bifurcation �����1� the dynamics of Eq. �1� can be approxi-
mately described by the linear equation

ẋ = y, ẏ = �̃y − �0
2x + D��t� + F�t� , �4�

with the rescaled bifurcation parameter

�̃ = � − 	x2
 =
�

2
�1 +�1 +

2D2

�2�0
2� . �5�

In Fourier space the dynamic equations read −i�x̂= ŷ,

−i�ŷ= �̃ŷ−�0
2x̂+D�̂−Kŷ�1−ei��� / �1−Rei���, where x̂���,

ŷ��� are the Fourier transforms of x�t�, y�t�. Note that for
small noise intensity D��0���, we can set �̃
�. Taking
into account that 	ŷ*���ŷ����
=���−���Syy���, and

	�̂*����̂����
= 1
2����−���, we obtain the spectrum

Syy��� =
D2

2�

�2

��2 − �0
2 + �����2 + �2��̃ − �����2 , �6�

with

���� = �K
sin�����1 − R�

1 − 2R cos �� + R2 , �7�

���� = K
�1 − cos������1 + R�
1 − 2R cos �� + R2 . �8�

This analytical formula is in excellent agreement with nu-
merical simulations �see Fig. 2�. Note that for R close to
unity �c� two main components can be clearly distinguished
in the spectrum: a broad background, and a sharp peak on
top of the background. The former hardly changes with vary-
ing R, whereas the latter sharpens as R increases. Since, ac-
cording to the Wiener-Khinchin theorem, the power spectral
density is the Fourier transform of the ACF, the spectral
components reflect different time scales of the ACF. To sepa-
rate those spectral components, we require 1−R�1,
�
2�n /�0, n�N, and consider Eq. �6� for two separate
frequency domains: ��
2�n and ���2�n. In the first case
we set �=�0�1+��, where ��1. Taking into account that

sin����
�0�� and 1−cos����
��0���2 /2 �12�, we obtain
the approximation of Eq. �6�,

Syy
1 ��� =

D2

2�K2�2

�1 − R�2

�� − �0�2 + ���1 − R�
K�

�2 , �9�

in the vicinity of the sharp central peak. In the second case
we rewrite 1−2R cos ��+R2=2R�1−cos ���+ �1−R�2. Not-
ing �1−R� /2R
0, �1+R� /2R
1 we get

Syy
2 ��� =

D2

2�

�2

��2 − �0
2�2 + �2�� − K�2 , �10�

which describes the background. The superposition
Syy 
Syy

1 +Syy
2 gives an approximation of Eq. �6�, which, as

Fig. 2�c� shows, quite accurately describes the spectrum for
R close to unity, and �
2�n /�0. Thus, the origin of the two
time scales of the ACF becomes clear. Since the ACF is the
inverse Fourier transform of the power spectral density, it is
the superposition of two terms, corresponding to the narrow
peak Syy

1 , and the broad background Syy
2 , respectively. Syy

1 ���
is a Lorentzian with half-width �1=��1−R� / �K��, yielding
the Fourier transform 
yy

1 �exp�−�1t�. Hence, the slow ex-
ponential decay of the ACF with characteristic time
te
1=1/�1 �Fig. 1� is defined by the width of the sharp spectral

peak, whereas the broad background width �2= ��−K� deter-
mines the abrupt drop of 
yy

2 �exp�−�2t /2� with character-
istic time te

2=2/�2. From Eq. �6� it follows that by variation
of the control parameters K, �, R of the extended delayed
feedback F one can control all essential features of noise-
induced oscillations such as coherence, time scales, and
spectral content. In particular, from Eqs. �9� and �10� it fol-
lows that by varying K one can control the short-term corre-
lations, whereas R essentially governs long-term correla-
tions.

In order to understand how the feedback F acts upon the
long-term correlations, we examine the dependence of
te� te

1 and Syy upon the feedback parameters � and R. Figure
3�a� shows te vs time delay � for R=0.9, and K=0.2. Simi-
larly to the case R=0 �7,8,12,13�, the minima of the correla-
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FIG. 1. �Color online� �a� Autocorrelation function 
yy of the
controlled Van der Pol system for R=0.9, �=6.3, K=0.2,
D=0.003. The fast oscillations �shading� are not resolved. �b�
Blowup of the first 30 time units. Dashed line: short-time exponen-
tial decay. Solid line: long-time exponential envelope.
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FIG. 2. �Color online� Spectrum of oscillations Syy��� of Eq. �1�
for D=0.003, K=0.2, �=31.4: �a� R=0, �b� R=0.5, �c� R=0.9 �in-
set: enlargement�. Shaded: numerical simulation; solid line �red on-
line�: analytical result Eq. �6�; dashed black line in �c�: background
approximation Eq. �10�; dash-dotted line in inset of �c�: peak ap-
proximation Eq. �9�.
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tion time occur for � close to �2n−1� /2T0, where n is an
integer, and T0=2� /�0 is the basic period of noise-induced
oscillations for K=0, and the maxima occur for �=nT0. A
striking feature is, however, that for these optimal values of �
the correlation time te increases dramatically with increasing
R �see solid curve in Fig. 3�b��. In fact, as R approaches
unity, te→�, i.e., by increasing R one can achieve practically
any extent of coherence.

Some analytical insight into the mechanism of enhance-
ment of the coherence can be obtained by noting that the
stochastic oscillations occur in the vicinity of the fixed point
�0,0�. Hence the stability properties of this fixed point influ-
ence the noise-induced dynamics. To check this assumption a
linear stability analysis is performed. The characteristic
equation corresponding to Eqs. �1� with D=0 linearized
around the origin reads

�2 − �� + �0
2 + K�

1 − e−��

1 − Re−�� = 0. �11�

Due to the delay term, this equation yields a countable set of
complex eigenvalues �k= pk+ iqk with real pk ,qk. First, we
check if the delayed feedback induces a Hopf bifurcation,
which would provide a trivial explanation for the enhance-
ment of regularity of oscillations. Setting pk=0 and qk�0,
and splitting Eq. �11� into real and imaginary parts, we ob-
tain the condition

cos�qk�� =
K + KR − �1 + R2��

K + KR − 2R�
. �12�

Since �	0, K�0, R�0, and �cos�qk����1, this equation
cannot be satisfied for 1+R2�2R, which is equivalent to
�R−1�2�0. Thus, for 0�R	1 the feedback cannot induce a
Hopf bifurcation, and the real parts pk always remain nega-
tive.

The solution of Eq. �11� is shown in Figs. 3�c� and 3�d�.
The enhancement in the regularity of noise-induced oscilla-
tions is connected with the eigenvalue, which has the largest
real part pmax	0. Namely, if a real part pk comes close to 0,
the corresponding eigenmode becomes less stable and can be
excited more easily by noise, which leads to more regular
oscillations. For optimum �
nT0, where n is an integer, and
R→1, the largest eigenvalue tends to 0, thus inducing a dra-
matic increase of the correlation time �Fig. 3�b��. We also
note that a crossover between different modes pk results in a
jump in the characteristic period of noise-induced oscilla-
tions with increasing � as in the case R=0 �7�. As is shown in
Fig. 3�c�, the eigenperiod Tmax=2� /qmax corresponding to
the largest real part �solid line� agrees with the period Ts of
the main peak of the spectrum �circles� and depends piece-
wise linearly on �.

Now let us analytically estimate the correlation time te. In
�13� it has been shown that for R=0, small D and � close to
nT0, te is related to the largest real part pmax of the eigenval-
ues

te � −
1

pmax
. �13�

The key idea for the derivation of the above relation is to
neglect all but the least stable eigenmode of the system,
thereby approximating the Van der Pol system by a two di-
mensional Ornstein-Uhlenbeck process �13�. This assump-
tion is justified if only one real part pmax of the eigenvalues is
close to 0 and all others have an absolute value, which is at
least one order of magnitude larger. As it is seen from Fig.
3�d�, this assumption is also valid for R�0. Then the corre-
sponding eigenvalue �max= pmax+ iqmax can be rewritten as

�max = �p + i�1 + �q��0, �14�

where ��p� , ��q��1. Substitution of e−��=1−��+O��2� in
Eq. �11� and neglecting the terms of higher order yields

Ki�0�1 − e−i�0� + e−i�0���� + K��1 − e−i�0��

+ �1 − Re−i�0���2i�0� − i��0� = 0, �15�

with �=�p+ i�q�0. For the optimum �=2�n /�0 the solution
of this equation can be found exactly:

pmax =
�

2

1

1 +
K

2�1 − R�
�

, qmax = �0. �16�

Then from Eq. �13� we obtain the correlation time

te = −
2

�
�1 +

K

2�1 − R�
�� . �17�

Figures 3�a� and 3�b� show that this result is in very good
agreement with the numerical simulations. As R→1 we have
te→�, which means that the correlation time can be in-
creased arbitrarily. It should be noted that for R close to unity
the formula �17� becomes equal to te

1=1/�1, which is the
inverse width of the sharp central peak of the spectrum �6� in
the approximation �9�.
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FIG. 3. �Color online� Exponential correlation time te �a� vs �
for R=0.9 and �b� vs R for �=6.28 �solid line� and �=3.14 �dashed
line� and D=0.003, K=0.2. The crosses mark the analytical esti-
mate Eq. �17� for �=6.28; �c� eigenperiods Ti=2� /qi �dashed�
where qi are the imaginary parts of the eigenvalues �i, and largest
spectral peak periods Ts �circles� vs � for R=0.9; �d� real parts pi of
the eigenvalues �i given by the characteristic Eq. �11� vs R for
�=6.28 and K=0.2. Inset: lower real parts of eigenvalues in an
enlarged scale.
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Finally, the stability and the frequency of all eigenmodes
in dependence on R gives us detailed insight into the decom-
position of the spectrum into a flat background and a sharp
peak and thus into the origin of the different time scales of
the ACF. The numerical solution of the characteristic equa-
tion shows that the imaginary parts �i.e., the frequency� of
the eigenvalues remain practically constant with increasing
R. Therefore the frequencies of the spectral peaks do not
change with increasing R �see Fig. 2�. Inspection of the sta-
bility of different eigenmodes �Fig. 3�d�� reveals the follow-
ing effect of the multiple-time delayed feedback: For opti-
mum � the largest real part of the eigenvalues tends to 0 for
R→1. This leads to the increasing correlation time and the
sharp peak in the spectrum. The real parts of all other eigen-
modes that are generated by the delayed feedback loop ap-
proach each other as R increases. Hence white noise can
equally well excite all eigenmodes due to their comparable
stability features. Since, however, they all have different fre-
quencies we obtain the flat background in the spectrum. For
R→1 these real parts also tend to 0 like the largest real part.
This means that, concomitant with a sharper main peak, we
also get an increasing background in the spectrum.

In conclusion, we have shown that extended multiple-time
delayed feedback leads to an interesting phenomenon in the
control of noise-induced oscillations near a Hopf instability:

It creates two distinct, independent time scales in the auto-
correlation function, and allows for a dramatic increase of
the correlation time, as compared to single-time delayed
feedback control. The long-term correlations are essentially
controlled by the memory parameter R. The most coherent
oscillations occur for � close to an integer multiple of the
basic period of noise-induced oscillations without control.
The possibility to increase the correlation time to arbitrarily
large values by tuning R opens up new applications. Since
our results are derived for the paradigmatic Van der Pol sys-
tem �which is representative for nonlinear oscillators close to
a Hopf bifurcation�, this control method promises wide ap-
plicability in physics, chemistry, biology, medicine, technol-
ogy, where it is often not sufficient to tune the coherence
properties of noise-driven dynamics only slightly, but where
there is need to improve the coherence by many orders of
magnitude. It seems promising to apply multiple-time de-
layed feedback also to systems of coupled stochastic oscilla-
tors �15� describing neural dynamics, and space-time pat-
terns in reaction-diffusion systems �16� to drastically
improve single-time control methods.

This work was supported by DFG in the framework of
Sfb 555 and by EPSRC �UK�.
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